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Prior computations have predicted the time-averaged acoustic radiation force on fluid

spheres in water when illuminated by an acoustic high-order Bessel beam (HOBB) of

force function of a HOBB quasi-standing wave tweezers are obtained for beams of zero,

first and second order, and discussed with particular emphasis on the amplitude ratio

describing the transition from progressive waves to quasi-standing waves behavior.

This investigation may be helpful in the development of acoustic tweezers and methods

for manipulating objects in reduced gravity environments and space related

applications.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of the radiation force exerted on a particle in either an electromagnetic or acoustic field has attracted many
researchers in the field of laser and acoustical trapping [1–6]. Laser-trapping has been widely used for the measurement of
pico-Newton order forces that are associated with interactions of particles in micrometer or nanometer regions [7].
Similarly, acoustical tweezers have found interesting applications in particle manipulation and entrapment [8–10]. Sound
carries energy and momentum, and hence the radiation force of acoustical tweezers is produced by the exchange of
momentum and energy between the wave and the particle placed along its path.

The majority of acoustical traps (or tweezers) use a pair of coaxial transducers emitting counterpropagating acoustical
waves. Usually, the beams’ type corresponds to focused Gaussian profiles [9]. However, Gaussian beams suffer from the natural
diffractive spreading as explained by the Huygens–Fresnel principle. In addition, Gaussian beams are only useful for particle
trapping when the index of refraction inside the particle exceeds the ambient index of refraction [6]. This effect led researchers
to use doughnut-shaped laser beams (or ‘‘hollow’’ beams) for particle manipulation and entrapment [11–13].

One type of ‘‘hollow’’ beams has a Bessel function of the first kind of order m usually denoted by Jm. Such beams are
therefore termed ‘‘Bessel beams’’. Bessel beams are localized in transverse direction [14] and have potential applications in
various areas of research including medical acoustical imaging [15,16], particle manipulation with optical tweezers
[17–20] and promising relevance in designing acoustical tweezers. In the field of acoustics, recent theoretical research has
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been focused on studying the acoustic radiation force of zero-order (m=0) Bessel beam tweezers on an elastic spherical
particle [21,22]. In those studies, it has been shown that the direction of the force depends on the axial position in the
acoustic standing or quasi-standing wave field, as well as the mechanical properties of the sphere. Furthermore, earlier
investigations using zero-order Bessel acoustic beams of progressive waves [23,24] have predicted a negative force on fluid
and elastic spheres and spherical shells [25,26].

It is particularly important to note that the fundamental zero-order Bessel beam has an amplitude maximum at the
origin, whereas a high-order Bessel beam (HOBB) of order m possesses an axial phase singularity at the transverse origin
where the amplitude vanishes as expected from the mathematical descriptive nature of the high-order Bessel function of
the first kind Jm40 [27]. For this reason, such beams are termed ‘‘hollow beams’’.

One may therefore ask if such hollow beams exert a radiation force on an object placed along their path, and under
which circumstances this effect occurs. Recent theoretical investigations [28–32] have confirmed the existence of the
radiation force on a rigid sphere [28,31,32], a spherical air bubble and fluid spheres of various densities immersed in non-
viscous water [29,30]. An especially noteworthy result illustrated in [29,30] is the lack of a specific vibrational resonance
mode contribution to the radiation force determined by appropriate selection of the HOBB parameters. The present
investigation extends the prior work [29] to the case of a rigid sphere in non-viscous water which perfectly mimics a fluid
sphere in air. The rigid sphere example is of particular importance for various applications in particle manipulation and
trapping using acoustical waves since it perfectly models the levitation of fluid drops in air [33]. In practical applications,
‘‘perfect’’ standing waves may be difficult to achieve because of the acoustic reflection on the tweezers’ boundaries. In fact,
the resulting acoustic field is a quasi-standing wave-field characterized by its specific wave amplitudes F0 and F1 that
create the beam. In this paper, the radiation force function, which is the radiation force per unit energy density and unit
cross-sectional surface, is numerically evaluated for a rigid immovable sphere. The acoustic scattering of the beam
composed of quasi-standing waves, which is characterized by its half-cone angle b of the wavenumber components, the
waves’ amplitudes F0 and F1, and the order m of the HOBB, is used to evaluate the radiation force function. Numerical
examples are provided and discussed with particular emphasis on the waves’ amplitude ratio describing the transition
from progressive to quasi-standing waves behavior.

2. Computation of the axial radiation force of a high-order Bessel beam on a rigid sphere

Relevant results for the computation of the force are summarized here. The axial radiation force in a quasi-standing
HOBB wave-field on a sphere of radius a is related to a dimensionless radiation force function YJm ,qst by [29]

/FzSJm ,qst ¼ YJm ,qstScE, (1)

where E¼ rk2jF0j
2=2 is the characteristic energy density, r is the mass density of the surrounding fluid, k¼o=c¼ 2p=l, is

defined as the wavenumber of the incident HOBB, o is the angular frequency, c is the speed of sound in the fluid medium, l
being the wavelength of the acoustic radiation making up the HOBB, F0 is the amplitude of the wave propagating along the
positive direction of the z-axis, and Sc=pa2 is the cross-sectional area. The dimensionless factor YJm ,qst is defined as the
radiation force function for a HOBB of quasi-standing waves, and is expressed by [29]

YJm ,qst ¼
8
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, (2)

where Pm
n ð�Þ are the associated Legendre functions of the first kind, kz ¼ k cosb where b is the half-cone angle formed by the

wavenumber k relative to the axis of wave propagation (z-axis), h is the distance in the z-direction from the center of the
sphere to the nearest velocity potential antinode, F1 is the amplitude of the wave propagating along the negative direction
of the z-axis and is assumed to be smaller than F0 and an and bn are the real and imaginary part of the scattering
coefficients An ¼ ðanþ ibnÞ. These coefficients are known for a rigid immovable (fixed) sphere [34] to be

An ¼�
j0nðkaÞ

hð1Þ
0

n ðkaÞ
, (3)

where jnð�Þ is the spherical Bessel function of the first kind of order n, hð1Þn ð�Þ denotes the spherical Hankel function of the
first kind and the primes denote their derivatives with respect to the argument.

3. Numerical results and discussion

Numerical values of YJm ,qst as given by Eq. (2) are evaluated for a rigid immovable sphere immersed in non-viscous
water. It is appropriate to investigate the rigid case since the sphere elicits no elastic vibration and the scattering is well
known. This example is of some fundamental importance in fluid dynamics applications because it simulates the
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interaction of acoustical axisymmetric HOBBs in a reduced gravity environment with a levitated liquid drop in air while
maintaining its spherical shape. Since the drop is usually about 813 times denser than air and the acoustic impedances of
liquid and air are mismatched, liquid drops in air are adequately approximated as perfectly rigid objects, and the time-
averaged radiation force is not sensitive to the density or sound speed of the drop [33]. In this example, the surrounding
fluid medium has a density of r=1000 kg/m3, and a speed of sound of c=1500 m/s. Realizing the large number of variables
in Eq. (2), no attempt is made here to study the variations of each of them. Therefore, the attention is focused on a typical
example model in which the half-cone angle has a fixed value, i.e. b=651. The YJm ,qst curves are subsequently evaluated for a
HOBB of zero, first and second order, respectively, with particular emphasis on three amplitude ratios jF1j=jF0j of the
quasi-standing wave field. The ratio jF1j=jF0j ¼ 0 corresponds to a pure progressive wave [28,30], jF1j=jF0j ¼ 1
corresponds to a pure standing wave [32], and jF1j=jF0j ¼ 0:5 is for a typical quasi-standing wave field. Moreover, the
curves are plotted in the bandwidth 0rkar10. For the ease of the computational evaluation of Eq. (2), the parameter h is
chosen to be dependent on the wavenumber k (or frequency) and the half-cone angle b such that h¼ p=ð4k cosbÞ; the
sphere is therefore assumed to be located at the intermediate location between a pressure node and a pressure antinode in
the quasi-standing wave field [21]. Accurate computation of the spherical Bessel, Neumann, and Hankel functions is
achieved using modified versions of Matlab (Math Works, Natick, MA) specialized math functions ‘‘besselj,’’ ‘‘bessely,’’ and
‘‘besselh.’’ The convergence of calculations are systematically checked in a simple trail and error manner, by decreasing the
tolerance in the accuracy of the acceptable solutions (i.e. indirectly increasing the number of iterations) while looking for
steadiness or stability in the numerical value of the calculated radiation force functions. Calculations of the series given in
Eq. (2) are evaluated in the bandwidth 0rkar10. The computational increment of Dka=10–2 is used. Since the sphere is
rigid immovable and exhibits no resonances, decreasing Dka has no effect on the radiation force function curves.

Fig. 1 shows the comparison between the zero-, first-, and second-order Bessel beam radiation force function YJm ,qst

curves as a function of ka with the amplitude ratio jF1j=jF0j ¼ 0 and b=651. The curves correspond to a HOBB of pure
progressive waves. For the zero-order (m=0) Bessel beam, the form of Eq. (2) reduces to Eq. (10b) in [25]. One particularly
notices the increase in the radiation force function values around kaE1.65. This amplitude peak is found to be correlated
with conditions giving acoustic scattering enhancement into the backwards hemisphere [25,26]. The dashed curve in Fig. 1
corresponds to a first-order (m=1) Bessel beam. It shows that the radiation force function exhibits negative values around
kaE1.738 that can be associated with a reduction of the acoustic scattering into the backwards hemisphere [31]. In the
axial direction, the forward acoustic scattering (y=0) and backscattering (y=p) vanish [35–37]. This phenomenon was
previously anticipated from experimental observations related to the design and the evaluation of an acoustical helicoidal
transducer having an azimuthal dependence on the phase [38]. The dot-dashed curve in Fig. 1 shows the YJm ,qst curve for a
second-order (m=2) Bessel beam. One notices the similar behavior of the curve’s variations as compared with the dashed
curve of a Bessel beam of first-order; however, the amplitude values are reduced. As ka increases (�ka45), the radiation
force function YJm ,qst curves converge to comparable amplitude values.

Fig. 2 shows the comparison between the zero-, first-, and second-order Bessel beam radiation force function YJm ,qst

curves as a function of ka with the amplitude ratio jF1j=jF0j ¼ 0:5 and b=651. The curves correspond to a HOBB of typical
quasi-standing waves. For the zero-order (m=0) Bessel beam, the form of Eq. (2) reduces to Eq. (18) in [21]. For the first-
and second-order Bessel beams, YJm ,qst curves exhibit positive as well as negative values. The force is directed towards a
pressure node when YJm ,qst 40 and is directed towards a pressure antinode if YJm ,qst o0. The exact equilibrium position can
Fig. 1. (Color online) The plots where YJm ,qst curves are computed by Eq. (11) for a rigid immovable sphere immersed in water and placed in a zero- (solid

line —), first- (dashed line – – –), and second-order (dashed-dotted line – �– �– � ) Bessel beam, respectively. The curves are plotted as a function of ka with

the amplitude ratio jF1j=jF0j ¼ 0 and b=651. The curves correspond to beams of pure progressive waves. For m=0, one particularly notices the increase in

the radiation force function values around kaE1.65. The dashed curve in Fig. 1 corresponds to a first-order (m=1) Bessel beam. It shows that the radiation

force function exhibits a minimum at ðka,YJm ,qstÞ ¼ ð1:738,-8:0857� 10-4
Þ. The dot-dashed curve shows the YJm ,qst curve for a second-order (m=2) Bessel

beam. One notices the similar behavior of the curve’s variations as compared with the dashed curve of a Bessel beam of first-order; however, the

amplitude values are reduced. As ka increases (�ka45), the radiation force function YJm ,qst curves converge to comparable amplitude values.
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Fig. 2. (Color online) The same as in Fig. 1, but the curves are plotted for the amplitude ratio jF1j=jF0j ¼ 0:5. The curves correspond to typical HOBB quasi-

standing waves. The dashed and dot-dashed curves corresponding to the first- and second-order Bessel beams, respectively, exhibit positive as well as

negative values. The force is directed towards a pressure node when YJm ,qst 40 and is directed toward a pressure antinode if YJm ,qst o0.

Fig. 3. (Color online) The same as in Fig. 1, but the curves are plotted for the amplitude ratio jF1j=jF0j ¼ 1. The curves correspond to equi-amplitude

(pure) standing waves. One particularly notices the similar behavior of the curve’s variations as compared with Fig. 2 for quasi-standing HOBBs. However,

the absolute amplitude values of the YJm ,qst curves are amplified for HOBB standing waves.
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be predicted from the expression of YJm ,qst in Eq. (2) for a particular frequency. The particle immobilization at the
equilibrium position may be used for advantage to predict some properties of the sphere as well as the HOBB
quasi-standing wave field.

Fig. 3 shows the comparison between the zero-, first-, and second-order Bessel beam radiation force function YJm ,qst

curves as a function of ka with the amplitude ratio jF1j=jF0j ¼ 1 and b=651. The curves correspond to beams of pure
standing waves. For the zero-order (m=0) Bessel beam, the form of Eq. (2) reduces to Eq. (15) in [21]. One particularly
notices the similar behavior of the curve’s variations as compared with Fig. 2 for quasi-standing HOBBs. Nevertheless, the
absolute amplitude values of the YJm ,qst curves are amplified for HOBB standing waves. This result can be expected by
further mathematical analysis of Eq. (2); this equation shows that in a HOBB quasi-standing wave, the force is the
combination of two forces, one induced by a standing wave, and the other by a progressive wave. As the ratio jF1j=jF0j in
Eq. (2) increases from 0 to 1, the factor ðjF0j

2�jF1j
2Þ=ð2jF0j

2Þ decreases from 1/2 to 0. As a result, absolute values of YJm ,qst

curves increase and reach the limit of pure standing waves.
The particular analysis of Eq. (2) for which the order m and the half-cone angle b both equal zero, shows that YJm ,qst

reduces to the expression of the radiation force function of plane quasi-standing waves Yqst as given in [39]. This result is
somehow expected since the product of the Legendre functions P0

nð1ÞP
0
nþ1ð1Þ equals unity. In a recent work using the far-

field method (see the discussion in Section 3 in [32]), an expression of the radiation force resulting from a so called
‘‘superposition of a plane progressive wave and a standing wave’’, which actually corresponds to a plane quasi-standing
wave, is obtained [40]. That expression may at first appear to be a different form of Yqst given previously by a far-field
method (i.e. Eq. (19) in [33]) or by a near-field method (i.e. Eq. (26) in [39], [41]). Rewriting Eq. (1) in [40] (which
represents the incident pressure field on the sphere) in a spherical coordinates system as

pðzÞ ¼ p0

X1
n ¼ 0

eeikhþZðeikhþð�1Þne�ikhÞ

h i
inð2nþ1ÞjnðkrÞPnðcosyÞ, (4)
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where p0 ¼ rkcF0, the parameters e and Z are amplitude constants determined by ðeþZÞ ¼ 1 [40], and expressing the total
(incident+scattered) pressure field as

ptðzÞ ¼ p0

X1
n ¼ 0

½eeikhþZðeikhþð�1Þne�ikhÞ�inð2nþ1Þ½jnðkrÞþAnhð1Þn ðkrÞ�PnðcosyÞ, (5)

the resultant axial time-averaged acoustic radiation force in the plane wave limit is obtained after substituting Eq. (5) into
Eq. (14) in [33], and manipulating the result to give,

/FzSqst ¼ YqstScE, (6)

where

Yqst ¼
8
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It is obvious that Eq. (7) equals Eq. (19) in [33] and Eq. (26) in [39] in the limits,
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Therefore, the expression for the force given in [40] is commensurate with the same results given in [33] and [39] with no
particular advantage.

4. Conclusion

These calculations predict the axial radiation force on a rigid sphere illuminated by an axisymmetric HOBB of quasi-
standing waves. It is appropriate to investigate the rigid case since the sphere elicits no elastic vibration and the scattering
is well known. Typical numerical examples for the radiation force function YJm ,qst are obtained for beams of zero-, first- and
second-order, with particular emphasis on the amplitude ratio describing the transition from progressive waves to quasi-
standing waves behavior. These examples simulate the interaction of HOBB in a reduced gravity environment with a
levitated liquid drop in air and maintaining its spherical shape. They may be used to advantage in various areas in fluid
dynamics application using HOBBs for particle manipulation and entrapment.
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